Some Forcing Related Convergence Structures on Complete Boolean Algebras

نویسندگان

  • Miloš S. Kurilić
  • Aleksandar Pavlović
  • M. S. Kurilić
  • A. Pavlović
چکیده

Let convergences λi : B → P (B), i ≤ 4, on a complete Boolean algebra B be defined in the following way. For a sequence x = 〈xn : n ∈ ω〉 in B and the corresponding B-name for a subset of ω, τx = {〈ň, xn〉 : n ∈ ω}, let λi(x) = { {‖τx is infinite‖} if bi(x) = 1B, ∅ otherwise, where b1(x) = ‖τx is finite or cofinite‖, b2(x) = ‖τx is not unsupported‖, b3(x) = ‖τx is not a splitting real‖ and b4(x) = 1B. Then λ1 is the algebraic convergence generating the sequential topology on B, while the convergences λ2, λ3 and λ4, although different on each Boolean algebra producing splitting reals, generate the same topological convergence a generalization of the convergence on the Aleksandrov cube, considered in [18]. AMS Mathematics Subject Classification (2000): 54A20, 03E40, 03E75, 06E10, 54D55, 54A10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Ccc Boolean Algebras

Let B be a complete ccc Boolean algebra and let τs be the topology on B induced by the algebraic convergence of sequences in B. 1. Either there exists a Maharam submeasure on B or every nonempty open set in (B, τs) is topologically dense. 2. It is consistent that every weakly distributive complete ccc Boolean algebra carries a strictly positive Maharam submeasure. 3. The topological space (B, τ...

متن کامل

On some classes of expansions of ideals in $MV$-algebras

In this paper, we introduce the notions of expansion of ideals in $MV$-algebras, $ (tau,sigma)- $primary, $ (tau,sigma)$-obstinate  and $ (tau,sigma)$-Boolean  in $ MV- $algebras. We investigate the relations of them. For example, we show that every $ (tau,sigma)$-obstinate ideal of an $ MV-$ algebra is $ (tau,sigma)$-primary  and $ (tau,sigma)$-Boolean. In particular, we define an expansion $ ...

متن کامل

. L O ] 1 5 O ct 1 99 6 Subalgebras of Cohen algebras need not be

Let us denote by Cκ the standard Cohen algebra of π-weight κ, i.e. the complete Boolean algebra adjoining κ Cohen reals, where κ is an infinite cardinal or 0. More generally, we call a Boolean algebra A a Cohen algebra if (for technical convenience in Theorems 0.3 and 0.4 below) it satisfies the countable chain condition and forcing with A (more precisely with the partial ordering A \ {0}) is e...

متن کامل

A Complete Boolean Algebra That Has No Proper Atomless Complete Sublagebra

There exists a complete atomless Boolean algebra that has no proper atomless complete subalgebra. An atomless complete Boolean algebra B is simple [5] if it has no atomless complete subalgebra A such that A 6= B. The question whether such an algebra B exists was first raised in [8] where it was proved that B has no proper atomless complete subalgebra if and only if B is rigid andminimal. For mo...

متن کامل

Sequential Convergences on Generalized Boolean Algebras

In this paper we investigate convergence structures on a generalized Boolean algebra and their relations to convergence structures on abelian lattice ordered groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010